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The nucleolus – a gateway to viral infection?
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Summary.A number of viruses and viral proteins interact with a dynamic sub-
nuclear structure called the nucleolus. The nucleolus is present during interphase
inmammalian cells and is the site of ribosomebiogenesis, andhasbeen implicated
in controlling regulatory processes such as the cell cycle.Viruses interact with the
nucleolusand its antigens; viral proteins co-localisewith factors suchasnucleolin,
B23 and fibrillarin, and can cause their redistribution during infection. Viruses
can use these components as part of their replication process, and also use the
nucleolus as a site of replication itself. Many of these properties are not restricted
to any particular type of virus or replication mechanism, and examples of these
processes can be found in DNA, RNA and retroviruses. Evidence suggests that
viruses may target the nucleolus and its components to favour viral transcription,
translation and perhaps alter the cell cycle in order to promote virus replication.
Autoimmunity to nucleolin and fibrillarin have been associated with a number of
diseases, and by targeting the nucleolus and displacing nucleolar antigens, virus
infection might play a role in the initiation of these conditions.

Introduction

Theeukaryotic nucleus contains anumber of domainsor subcompartments,which
include nucleoli, nuclearCajal bodies, nuclear speckles, transcription and replica-
tion foci, and chromosome territories [34]. For many years the exclusive function
of the nucleolus was thought to be ribosomal rRNA synthesis and ribosome bio-
genesis. Recently, however, the nucleolus has been implicated in many aspects
of cell biology that include functions such as gene silencing, senescence, and cell
cycle regulation [8, 50, 51].

The nucleolus is the site where 5.8S, 18S and 28S rRNAs are transcribed,
processed, andassembled into ribosomesubunits [52].Thenucleolus is composed
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of (or contains) many different factors including: nucleolin, fibrillarin, spectrin,
B23, rRNA, and ribosomal proteins S5 and L9 [63, 65]. Electron microscopy
revealed that the nucleolus consists of at least three different regions; fibrillar
centres, a dense fibrillar component and a granular component [63]. These regions
may have different functions. For example, the perinucleolar compartment has
been implicated in RNA metabolism [29].

Nucleolar antigens

Three of the most abundant and well-understood proteins in the nucleolus are
nucleolin, fibrillarin and B23. Nucleolin (first called C23), represents approxi-
mately 10% of the total nucleolar protein content and is highly phosphorylated,
methylated, and also can beADP-ribosylated [25]. Nucleolin has the potential to
bind to multiple RNA targets and this may reflect its variety of functions [25, 26].
One of the main functions of nucleolin is facilitating the first cleavage step of
rRNA in the presence of U3 snoRNP. Nucleolin may function as a chaperone for
correct folding in pre-rRNA processing [27]. Nucleolin has also been implicated
as a repressor of transcription [78]. Whilst mammalian nucleolin has a predicted
molecularmass of approximately 77 kDa (depending on the species), the apparent
molecular mass is between 100 and 110 kDa, and has been attributed to the amino
acid composition of the N-terminal domain, which is highly phosphorylated [25].

Fibrillarin has a molecular mass of approximately 35 kDa and is highly con-
served in sequence, structure and function in eukaryotes, and analysis indicated
that human fibrillarin has a potential RNA binding domain in its central part [3].
Fibrillarin is directly involved in many post-transcriptional processes including
pre-rRNA processing, pre-rRNA methylation, and ribosome assembly [75].

B23 (also called numatrin, nucleophosmin or NO38) is widely distributed
amongst different species with approximately the same molecular mass of 35–
40 kDa [44, 65].Two isoformsof theproteinareexpressed, themajor form (B23.1)
is predominately located in the nucleolus and theminor form (B23.2) is located in
the cytoplasm. Similar to nucleolin and fibrillarin, B23 is likely to have multiple
functions and has been implicated in ribosome assembly [17], binding to other
nucleolar proteins, nucleocytoplasmic shuttling [37] and possibly regulating tran-
scription of rDNA by mediating structural changes in chromatin [49].

The nucleolus and the cell cycle

The nucleolus and associated proteins are also implicated in (and regulated by)
the cell cycle [8]. During interphase in higher eukaryotic cells the number of
nucleoli vary depending on the stage of the cell cycle, and the nucleolus dis-
appears at the start of mitosis [2]. During G1 cells can contain more than one
nucleolus. This is probably reflected in the fact that these cells are translationally
active, and therefore requiremore ribosomes,whose synthesismay in turn be con-
trolled by the phosphatidylinositol-3-OH kinase (PI(3)K) pathway [74]. As the
cells progress through S phase and into G2, where single nucleoli can be present.
The nucleolus then disperses during mitosis.At telophase nucleogenesis involves
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the distribution of material derived from the mother cell toward the active NORs
of the daughter nuclei and form pre-nucleolar bodies (PNBs) [19]. Subsequent
nucleolar reformation is a dynamic and complex process [4]. Cajal bodies asso-
ciate with nucleoli, and contain many similar components such as fibrillarin [55,
69], and they sequester CDK2 and cyclin E in a cell cycle dependent manner [40].
The concentration of nucleolin and B23 [68] and the distribution of fibrillarin are
dependent on the cell cycle [4, 23]. Nucleolin is stable in proliferative cells, but
undergoes self-cleavage in quiescent cells [11] (e.g. Fig. 2, lane 1) and has been
suggested to be involved in regulation of cell growth and proliferation [70].

Table 1. Examples of viral proteins that localise to the nucleolus
and sub-nuclear compartments

Virus Protein Nucleolus Interaction with Reference(s)
nucleolar antigens

RNA viruses

BDV Replication + [57]
complex

BVDV Capsid + [61]
CMV 3A + [42]

Capsid + [38]
Coronavirus Nucleoprotein + + [28, 77]
HDV Delta antigen + + [35]

Viral RNA
Influenza A virus NP + [15, 16]
NDV Matrix protein + [53]
Poliovirus (3′ NCR) + [76]
PRRSV Nucleoprotein + [62]
SFV Capsid + [22]

protein

Retrovirus

HIV-1 Rev + + [18, 21]
Tat + [67]

HTLV-1 Rex + + [1, 66]

DNA viruses

Adenovirus IVa2 + [41]
V + + [45, 46]

EBV EBNA5 + [72]
HSV-1 Us11 + [43]

ICP27 + [47]
MDV MEQ + [39]

Abbreviations: BDV (Borna disease virus), BVDV (bovine viral diarrhoea virus), CMV
(cucumber mosaic virus), EBV (Epstein Barr virus), HDV (hepatitis delta virus), HIV
(human immunodeficiency virus), HSV (herpes simplex virus), HTLV (human T-cell
leukaemia virus), MDV (Marek’s disease virus), NDV (Newcastle disease virus), PRRSV
(porcine reproductive and respiratory syndrome virus) and SFV (Semliki Forest virus)
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Viral interactions with the nucleolus

As a consequence of infection or a deliberate process, a number of viruses interact
with the nucleolus and its components. It is the site of Borna disease virus replica-
tion and transcription [57], andmight be involved in HIV-1 RNA processing [48].
A number of viral proteins localise to the nucleolus, with examples from animal
retroviruses and DNA viruses, and animal and plant RNA viruses (Table 1).Why
viral proteins localise to the nucleolus has not been precisely determined, al-
though given the multifunctional role of the nucleolus several activities could be
targeted, including cellular transcription [39, 56], virus transcription [46], virus
translation [28] or cell division [77].

Nucleoli can be visualised using immunofluorescence by mounting prepara-
tions in propidium iodide to visualise nuclear DNA and regions of rRNA synthe-
sis [28] or using antibodies to nucleolar antigens [46, 77], or transfecting cells

�
Fig. 1. A Detection of bovine viral diarrhoea virus (BVDV) capsid protein (green) by in-
direct immunofluorescence and nuclear DNA (red) by direct fluorescence using a confocal
microscope in cells transfected with a plasmid expressing BVDV capsid protein with a C-
terminal V5 epitope under the control of a CMV promoter. V5 epitope was detected using
mouse monoclonal anti-V5 antibody and nuclear DNA and regions of rRNA transcription
(nucleoli) were visualised by staining cells with propidium iodide. Nucleoli are visible as
bright red dots, yellow indicates colocalisation and examples of nucleoli in transfected cells
are arrowed.B Detection of influenza A virus nucleocapsid protein (NP) (green) by indi-
rect immunofluorescence and nuclear DNA (red) by direct fluorescence using a confocal
microscope in cells transfected with a plasmid, pCDNA3-NP, expressing NP (generously
provided by Dr. Wendy Barclay [71]). NP was detected using mouse monoclonal anti-NP
antibody and nuclear DNA was visualised by staining cells with propidium iodide. Nucleoli
are arrowed.C Detection of infectious bronchitis virus nucleoprotein (N protein) (red) and
B23 (green) by indirect immunofluorescence using a confocalmicroscope in cells transfected
with a plasmid expressing IBV N protein under the control of a CMV promoter (pCi-IBV-
N) [28]. N protein was detected with rabbit anti-IBV polyclonal sera (generously provided
by Dr. Dave Cavanagh) and B23 with anti-B23 (Human) goat polyclonal antibody (Santa
Cruz Laboratories). Examples of nucleoli are arrowed.D Detection of murine hepatitis virus
(MHV) N protein (red) and fibrillarin (green) by indirect immunofluorescence using a con-
focal microscope in cells transfected with a plasmid expressing MHV N protein under the
control of a CMV promoter (pCi-MHV-N) [77]. MHV N protein was detected with rabbit
anti-MHV polyclonal sera (generously provided by Prof. Peter Rottier) and fibrillarin with
anti-fibrillarin (Human) mouse monoclonal antibody (Cytoskeleton Research). Yellow indi-
cates colocalisation. Examples of nucleoli are arrowed.E Detection of MHV N protein (red)
by indirect immunofluorescence and a fibrillarin/GFP fusion protein (green) by direct im-
munofluorescence using a confocal microscope. Cells were co-transfected with pCi-MHV-N
andaplasmidexpressingafibrillarin/GFP fusionprotein (generously providedbyProf.Angus
Lamond). MHV N protein was detected with rabbit anti-MHV polyclonal sera.Yellow indi-
cates colocalisation. Nucleoli are arrowed.FDetection ofMHVNprotein (red) and nucleolin
(green) by indirect immunofluorescence using a confocal microscope. Cells were transfected
with pCi-MHV-N. MHV N protein was detected with rabbit anti-MHV polyclonal sera and
nucleolin with mouse anti-human nucleolin monoclonal sera (Leinco Laboratory). Nucleoli
are indicated by white arrows and examples of nuclear speckles by yellow arrows
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with plasmids that express nucleolar antigens tagged with fusion proteins such as
green fluorescent protein (GFP) [55, 69]. Several examples of these techniques in
conjunction with viral proteins that localise to the nucleolus are shown in Fig. 1.

Viruses can redistribute and interact with nucleolar antigens

Virus infection can also result in the redistribution, or viral proteins become as-
sociated with, nucleolar antigens (Table 1). For example, an adenovirus infection
results in the redistribution of nucleolin and B23 [46] and Okuwaki et al. [49]
have shown that B23 stimulates adenovirus replication. Nucleolin is prevented
from entering the nucleus in poliovirus-infected cells [76]. Nucleolin has been
shown to interact with the poliovirus 3′ non-coding region (NCR) and as a result,
was suggested to be involved in replication [76]. In addition, nucleolin was shown
to stimulate IRES-mediated translation of the poliovirus genome [30]. Nucleolar
targeting and an interaction with nucleolin has been shown to promote hepatitis
delta virus (HDV) replication [35]. Adenovirus [56] and coronavirus [13] in-
fection results in the redistribution of fibrillarin. By altering the distribution of
fibrillarin, virusesmight be reducing polI transcription i.e. the synthesis of rRNA,
as blocking fibrillarin with antibody prevented its translocation to nucleoli and
resulted in the reduction or inhibition of polI transcription [23]. Interestingly
PolI transcription is disrupted in adenovirus-infected cells [10]. Nucleolin (and
proteins belonging to the nucleolin super-family) have been suggested to act as
possible cell surface receptor for coxsackie B viruses [58] and HIV [7], and a
nucleolin-gag interaction may be involved in the assembly of Moloney murine
leukaemia virus [5].

Other sub-nuclear structures associated with the nucleolus
are also targeted during viral infections

Viral proteins also target other sub-nuclear bodies, such as Cajal (coiled) bodies
(e.g.Marek’s diseasevirus (MDV)MEQprotein [39]), nuclear speckles (e.g.HIV-
1 Rev protein [32] and mouse hepatitis virus nucleoprotein Fig. 1F) and nuclear
domain 10 (ND-10s – also known as promyelocytic leukaemia-associated nuclear
body (PML)) (e.g. adenovirus 5 E1b 55K, E1A and E4-ORF3 proteins [9, 36]).
ND-10s have been implicated in the modulation of the interferon response [79]
and by targeting this structure viruses have been shown to modulate downstream
antiviral effects (e.g. arenavirus infection [6]).

Factors effecting nucleolar localisation

A number of factors can determine whether a protein localises to the nucleolus.
Soluble proteinsof less than40–60 kDacandiffusepassively into thenucleoplasm
through the nuclear pore complex, and could in principal diffuse in and out of
the nucleolar compartment [54, 59]. Non-specific RNA binding proteins that
diffuse into the nucleus may therefore be expected to become concentrated in
the nucleolus because a large amount of rRNA is present. The transport of larger
proteins through the nuclear pore is an active process requiring ATP and nuclear
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localisation signals (NLSs), which also make up (in part) nucleolar localisation
signals (NuLS). NLSs include the ‘pat4’ motif, which consists of a continuous
stretch of four basic amino acids (arginine and lysine), and the ‘pat7’motif, which
starts with a proline and is followedwithin three residues by a segment containing
three basic residues out of four [24], or a bipartite signal [60]. Localisation of
a protein to the nucleolus is probably a result of targeting to the nucleus via
NLSs followed by an interaction between the target molecules (via the NuLS)
and components that make up the nucleolus [8, 65]. An example of a protein that
localises to the nucleolus in this manner is nucleolin, which contains a bipartite
NLS and associates with rRNA in the nucleolus via RNA binding domains [64].

Some viral proteins that localise to the nucleolus can also be found in the
nucleoplasm, e.g. MDV MEQ [39] suggesting some viral proteins localise to the
nucleolus do so by diffusing through the nuclear pore, into the nucleoplasm, and
associating with nucleolar factors in the nucleolus. Alternatively viral proteins
might stay associated with nucleolar antigens such as nucleolin and fibrillarin,
which are exchanged between the nucleoplasm and the nucleolus [12].

Several viral NuLS have been identified (Table 2), either by sequence compar-
ison to known NuLSs or experiments where candidate NuLSs have been used to
target fusion proteins to the nucleolus (e.g. arteriviruses [62]).Viral NuLSs can be
characterised by possessing either ‘pat4’ or ‘pat7’ motifs (e.g. the coronaviruses

Table 2. Amino acid sequence analysis of examples of virus proteins that contain nucleolar
localisation signals (NuLS) or signals that mediate an interaction with nucleolin

Protein (Amino acid position) NuLS Reference

Adenovirus 23–42 KKEEQDYKPRKLKRVKKKKK [46]
protein V

315–337 RPRRRATTRRRTTTGTRRRRRRR
159–182 KRGLKRESGDLAPTVQLMVPKRQRL

BVDV capsid 71–91 HNKNKPPESRKKLEKALLAW [61]
protein

HDV antigen 35–50 RKLKKKIKKLEEDNPWC [35]
51–65 LGNIKGIIGKKDKDGC

IBV 350–369 GNSPAPRQQRPKKEKKLKKQ [28]
nucleoprotein

MDV MEQ 62–78 RRRKRNRDAARRRRRKQ [39]
protein

SFV capsid 73–90 KPKKKKTTKPKPKTQPKK [22]
protein 92–105 KKKDKQADKKKKKP

TEGV 331–350 RPSEVAKEQRKRKSRSKSAE [77]
nucleoprotein

Abbreviations used are detailed in Table 1, except IBV (infectious bronchitis virus) and TGEV
(transmissible gastroenteritis virus). Potential NuLS are underlined. The nucleolin binding sites in
HDV antigen are shown in bold face
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Fig. 2. Western blot detection of nucleolin from Vero cell nuclear ex-
tracts (1), and nuclear extracts passed over infectious bronchitis virus
nucleoprotein immobilized on NTA beads (2). Nucleolin was detected
using C23 (human) goat polyclonal antibody (Santa Cruz Laboratories).
The positions of molecular weight markers (kDa) are shown to the left.
The position of mature nucleolin is arrowed

[28, 77]) or stretches of basic residues, for example adenovirus protein V [46]
or MDV MEQ protein [39]. Interestingly, Matthews [46] identified a possible
bipartite NuLS in adenovirus protein V (Table 2, amino acids 157–184). Some
viral NuLS have been shown to control interaction with nucleolin, e.g. HDV large
antigen, which contain two nucleolin binding domains (Table 2) and determine
targeting of the protein to the nucleolus [35].

Infectious bronchitis virus (IBV) nucleoprotein also associates with nucleolin
(Fig. 2) and HIV-1 Rev protein with B23 [21]. Rev and Rex proteins localise to
the nucleolus and contain a potential NuLS [14, 33]. Rev protein colocalizes with
B23 in the granular and dense fibrillar regions of the nucleolus [18], and rRNA
synthesis may be critical for the nucleolar localisation of both proteins [18].

Nucleolar antigens and auto-immunity

Auto-immunity to fibrillarin hasbeenassociatedwith thedisease scleroderma [20,
73], and auto-immunity to nucleolin with systematic lupus erythematosus [31].
Viral antigens which localise to the nucleolus of infected cells and displace (or
mimic) nucleolar antigens, might therefore stimulate the host immune response
into producing antibodies to viral proteins that could have the potential to bind
with the equivalent host proteins through structural mimicry. For example, po-
liovirus infection, which prevents nucleolin from entering the nucleus [76], may
cause an increase in nucleolin in the cytoplasm and concomitant increase in cell
surface expression. Thus, understanding the basis of viral protein interactions
with the nucleolar milieu, and its consequences, may extend our understanding
of how such autoimmune conditions develop.

Conclusion

The nucleolus is fundamental to the control of many processes inside the cell
including ribosome biogenesis, RNA processing, cell senescence, telomerase ac-
tivity and the cell cycle, and is thus central to the normal operating of a cell.
Interaction with the nucleolus is a pan-virus phenomena and data is accumulating



Viruses and the nucleolus 1085

to suggest that viruses can use the nucleolus or its antigens to enhance viral repli-
cation, either by interacting directly with proteins such as nucleolin, or altering
host cell transcription, translation and possibly the cell cycle. Apart from alter-
ing cellular functions, viral interactions with the nucleolus may contribute to the
progression of autoimmune diseases associated with nucleolar antigens.

Note added in proof

Since submitting thismanuscript,Andersenet al. [CurrBiol (2002) 12: 1–11] have
conducted a proteomic analysis of the nucleolus from HeLa cells and identified
271 nucleolar proteins.
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